Induction of Therapeutic Breast Cancer Immunity with an IL-2 Immunotoxin

Keith L. Knutson Mayo Clinic Rochester, MN 55906 Breast Cancer is Naturally Immunogenic

 T cells are associated with tumors and correlate with improved survival.

 Several tumor antigens have been identified by virtue of a pre-existent immune response. Natural immune defense against breast cancer is blocked

- <u>Recruitment of regulatory T</u>
 <u>cells</u>
- Induction of peripheral
 <u>tolerance</u>
- Recruitment of immature dendritic cells
- Loss of MHC molecules

Human breast cancer recruits regulatory T cells

Liyanage, et al., 2002

Immunotherapy strategies

Augmenting Immune Effectors Blocking Immunosuppression Restoring immune recognition

- Cancer vaccines
- Adoptive T cell therapy
- Cytokine therapy
- Monoclonal antibody therapy

- Anti-CTLA-4 MHC upregulation
- IL-2 Immunotoxin
- Small molecules

Understanding of tolerance and editing *critical* to rational design

Tumor development: neu-transgenic mouse

Normal epithelium

In situ

carcinoma

Adapted from Boggio et al., J.E. M., 1998, 188:589

Regulatory T cells in the neu-tg mouse

Regulatory T cells associate with breast tumors in the neu-tg mouse

Denileukin Diftitox

Diphtheria toxin fragments A and B (Met1-Thr387) IL-2 (Ala1-Thr133)

IL-2 immunotoxin therapy does not result is lymphopenia

Depletion of regulatory T cells leads to persistent tumor rejection

Denileukin diftitox fails to directly kill CD25-negative tumor cells

Sustained downmodulation of intratumoral regulatory T cells

Reconstitution of regulatory T cells restores normal tumor growth

Induction of tumor antigen-specific humoral immunity

Breaking tolerance to neu

Conclusions

- Natural breast cancer immune defense may be blocked by regulatory T cells.
- Regulatory T cells can be specifically deleted without significant hematopoietic disturbance using targeted immunotoxin.
- Blockade of regulatory T cells can to long-lasting immune rejection of breast cancer without further therapy (e.g. vaccines).
- The window of opportunity following depletion of regulatory T cells may be an opportunity to boost immunity with vaccines or T cell therapy.

Acknowledgements

Cell Therapy Group

<u>(Mayo)</u>

Marshall Behrens Courtney Erskine Karin Goodman Christopher Krco, Ph.D. Shay Park Christine Prosperi

Ligand Pharmaceuticals,

Inc. David Woo, Ph.D. Karen Brady

Tumor Vaccine Group

(Seattle) Bond Almand, M.D. Yushe Dang, Ph.D. Corazon dela Rosa, BSMT Mary L. Disis, M.D. Hailing Lu, Ph.D. Jason Lukas, M.D. Ph.D. Lupe Salazar, M.D. Wolfgang Wagner, Ph.D.

Funding provided by:

National Institutes of Health Grants K01CA100764 (KLK) R01CA113861 (KLK) R01CA85374 (MLD) K24CA85218 (MLD)