NK Cell Therapeutics for Cancer

Jeffrey S. Miller, M.D.

University of Minnesota Cancer Center Associate Director of Experimental Therapeutics Sponsor BB-IND 5708, 6544, 6545, 8847, 10430, 10530

Survivor, one random FDA audit Division of Heme/Onc/Transplant Minneapolis, MN

Chr. 19 determines the personality of NK cells: Killer-immunoglobulin receptor (KIR) gene locus

KIR3DL1*004 is not expressed at the surface

From Peter Parham

The interest in therapeutic uses of NK cells has been growing since in 2002

	Transplant	Graft	Outcome
Ruggeri <i>et al</i> Science 3/2002	Haploidentical KIR-L Mismatch	TCD	Benefit in AML
Davies <i>et al</i>	URD	UBM	No Benefit
Blood	KIR-L Mismatch		
11/2002			
Giebel <i>et al</i>	URD	In Vivo TCD	Benefit
Blood	KIR-L Mismatch		
8/2003			

How can we best exploit NK cells?

Adoptive Transfer

Transplant

Safer Transient Can expand in vivo (IL-2) More TRM Permanent Too risky 2° GVHD risk

Outpatient Subcutaneous IL-2 Promotes In Vivo NK Cell Expansion

Miller et al, Biol Blood Marrow Transplant 3:34, 1997

837 IND #'s later: Autologous NK Administration in Cancer Patients

NK Cell-based Autologous Immunotherapy to Prevent Relapse (HD, NHL, BC)

Burns et al, Bone Marrow Transplant, 32:177-186, 2003

Conclusions

Enhanced activation of NK cells

A matched paired analysis with our data and data from the IBMTR showed no apparent efficacy (survival or time to disease progression)

Hypothesis: Autologous NK Cell Therapy Failed Due to Inhibitory Receptors that Recognize MHC

2302 IND #'s later: Related Donor Haploidentical NK Infusions After High Dose Chemotherapy

Patients and Eligibility

- Poor prognosis AML
 - Primary refractory disease
 - Relapsed disease not in CR after 1 or more cycles of standard re-induction therapy
 - Secondary AML from MDS
 - Relapsed AML \geq 3 months after HCT.
- No active infections

Higher Numbers of Functional NK Cells in Patients with CR After Adoptive Transfer

NK cells did not expand with lower dose preparative regimens

Correlates with an increase in IL-15 and IL-7

Miller et al, Blood 105:3051, 2005

In vivo expansion of haploidentical **NK cells in AML**

B-act

0.1% 0.01% 0.001% No Donor PB CD56+ PB CD3+ PB CD19+ BM CD56+ BM CD3+ 100% 10% 1% H_20

Donor Specific HLA-A31

ß-actin

Long-term Follow-up

- 10 of 32 (31%) remissions
- No correlation with KIR-L mismatch
- 3 of 10 total CRs went on to receive allo transplant (1 sib, 2 UCB) with DFS > 2.5 years
- 3 died of toxicity without relapse (1 meningitis, 1 CNS, 1 PTLD)
- 4 of 10 CRs lasted 4-11 months (probably not curative)

Hypothesis

The best strategy may be to combine adoptive transfer and in vivo expansion followed by HCT

Adoptive Transfer

+

Transplant

The best of both worlds?

Where do we go from here?

- Improve Donor choice
- Improve NK cell activation
 - Interrupt inhibitory receptor mechanisms
- Increase target sensitivity
 - Bortezomib

Killer-Immunoglobulin Receptor (KIR) Gene Locus

3DP1

2DL4

3DL1

2DS4

3DL2

Group-A Haplotype: Absence of 2DL5, 2DS2, 2DS1, 2DS3, 2DS5, 3DS1

2DP1 2DL1

2DL3

3DL3

Group-B Haplotypes: Presence of at least one of above

Where do we go from here?

- Improve Donor choice
- Improve NK cell activation
 - Interrupt inhibitory receptor mechanisms
- Increase target sensitivity
 - Bortezomib

Verneris and Miller

Verneris and Miller

Where do we go from here?

- Improve Donor choice
- Improve NK cell activation
 - Interrupt inhibitory receptor mechanisms
- Increase target sensitivity
 - Bortezomib

SENSITIZATION OF TUMOR CELLS TO NK CELL-MEDIATED KILLING BY PROTEASOME INHIBTION RUNNING TITLE: BORTEZOMIB INCREASES NK CELL KILLING

William H.D. Hallett^{*}, Erik Ames^{*}, Milad Motarjemi^{*}, Isabel Barao^{*}, Anil Shanker[†], David L. Tamang^{*}, Thomas J. Sayers[†], Dorothy Hudig^{*} and William J. Murphy^{*}

Lessons and Issues

- Important strategic decisions
 - Do the right thing, do not forget the patient
 - Well-intended improvements may lead to failures (pure NK cells not clinically active)
 - Put as few people at risk as possible
 - Minimize patients exposed to therapies that will not work
 - BE FLEXIBLE
 - Do not do it alone
- Regulatory authorities
 - Work with the FDA and they will work with you
 - Be concrete, realistic and logical about your goals
 - Do not do it alone
- Funding of the project:
 - Huge issue but if science is solid NIH/NCI still good investors
 - If tied to therapeutics, clinical partners must also be will willing to invest
- Lessons learned
 - The field is narrowing...decide your contribution and make sure it is realistic
 - Specialized ETU's needed for clinical implementation
 - Make sure you have lab endpoints to teach you something when your trial fails and most of them will
 - COMBINATIONS ARE THE KEY TO SUCCESS...this is a challenge!

P01 (PI: Jeffrey S. Miller)

"NK Cells and their receptors in unrelated donor transplantation"

University of Minnesota

Jeffrey S. Miller, MD Daniel J. Weisdorf, MD Sarah Cooley, MD Michael Verneris, MD Chap T. Le, PhD Tracy Bergemann, PhD **Stanford University** Peter Parham, PhD Children's Hospital and Research **Institute**, Oakland Elizabeth Trachtenberg, PhD **Anthony Nolan Research Inst.** Steven G.E. Marsh, PhD Fred Hutchinson CRC Daniel Geraghty, PhD

NMDP/CIBMTR

Stephen Spellman Michael Haagenson John Klein, PhD Dennis Confer, MD Martin Meiers Tao Wang, PhD

Affiliated Clinical Sites

MCW

William Drobyski , MD David Margolis, MD Moffitt Claudio Anasetti, MD OSU Steven Devine, MD Emory Ned Waller, MD

Washington U John Dipersio, MD U of Penn David Porter, MD City of Hope

Sharif Farag, MD

Indiana

Steve Forman, MD

Acknowledgements

- Miller Lab
 - Valarie McCullar (Research)
 - Todd Lenvik
 - Robert Godal
 - Frank Cichocki
 - Purvi Gada
 - Gong Yun
 - Karen Peterson
 - Michelle Pitt
 - Becky Haack
 - Sue Fautsch (Translational)
 - Julie Curtsinger
 - Rosanna Warden
 - Liz Narten
 - Michelle Gleason

- HLA typing lab Harriet Noreen
 - CTO/Research Nurses (Dixie Lewis/Roby Nicklow)
- U of MN Faculty

•

- Dan Weisdorf
- Sarah Cooley
- Phil McGlave
- Arne Slungaard
- Linda Burns
- Claudio Brunstein
- Veronika Bachenova
- John Wagner
- Bruce Blazar
- Michaei Verneris
- Dave McKenna (GMP Facility)
- Chap Le/Tracy Bergemann (Biostat)