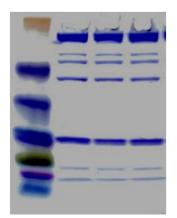


Development of Adenovirus vectors – from preclinical to Phase III iSBTc Oncology Biologics

Development Primer

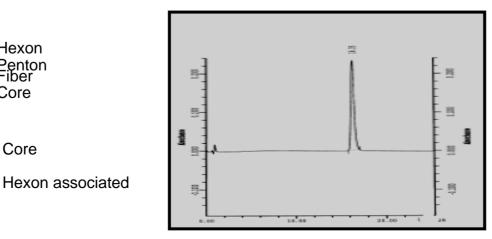
Sunil Chada, Ph.D. s.chada@introgen.com

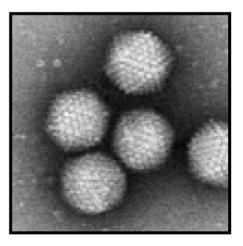

Clinical Pipeline

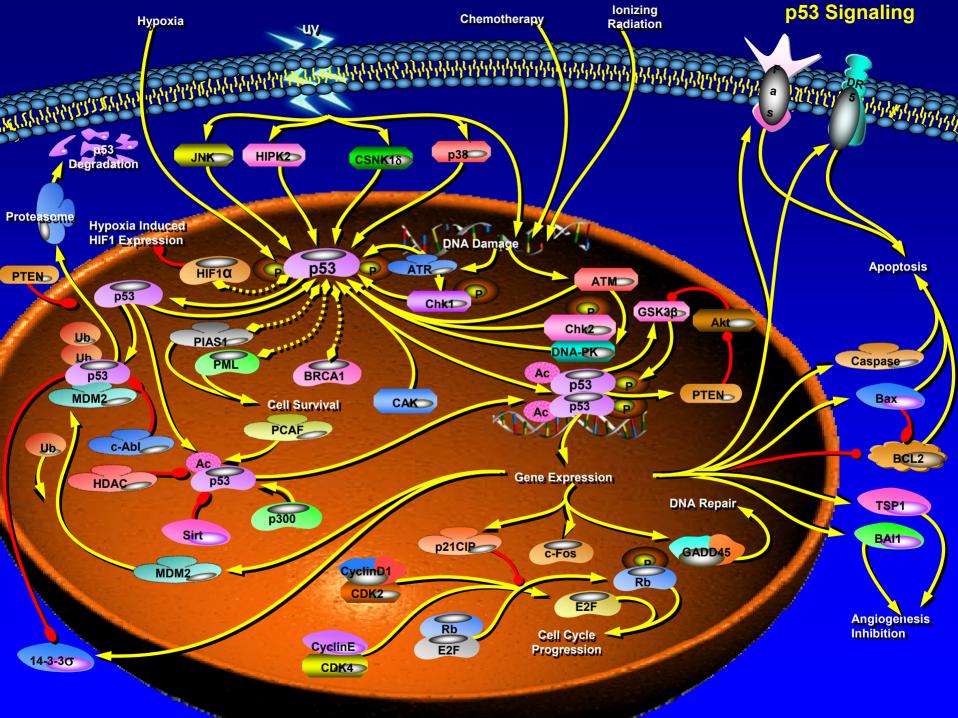
Product (Target)	Pre-Clinical	Phase I	Phase II	Phase III
ADVEXIN (p53)				
Head and Neck (monotherapy)				
Head and Neck (combo/chemo)	i		i	
Lung Cancer	ł			
Breast Cancer				
Esophageal Cancer				
+ 4 additional solid cancers	į			
INGN 241 (mda-7/IL-24)				
Solid Tumors + XRT	i			
Melanoma				
INGN 225 (p53 Immunotherapy)				- SAM
Small-cell Lung Cancer				
Breast Cancer	Ĭ			11 m
INGN 401 (Nanoparticle-FUS-1)				
Lung Cancer				
INGN 234 (Mouthwash)				
Oral cancers				

ADVEXIN® Construct 35.4 kb Adenovirus genome **p53 Adenovirus Structural Proteins E4 E1A/E1B Deleted** (E1) **E2 E3**

Human wt p53 cDNA SV40 Poly A **CMV** Promoter


2.3 kb Expression cassette insert

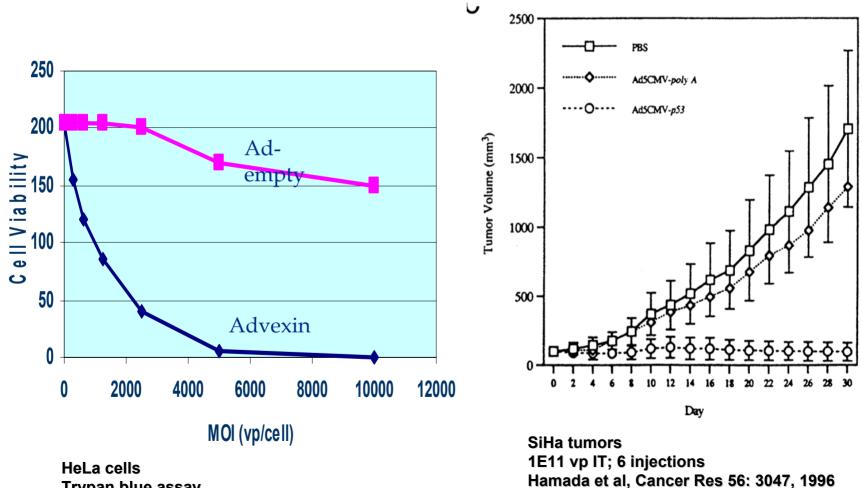



Hexon Penton Fiber

Core

Core




ADVEXIN[®] p53 Tumor Suppressor Therapy

- Selectively kills cancer cells, safe to normal cells
- Pharmacologic intervention with p53 protein targets fundamental molecular defect in cancer
- Non-replicating adenovirus; well tolerated >600 patients; >30 trials
- Excellent safety profile
- Useful alone and in combination with local and systemic modalities — radiotherapy, surgery, chemotherapy, biotherapy

Mechanisms of ADVEXIN[®] Activity

Preclinical studies

Trypan blue assay

Advexin exhibits tumor-selectivity

Tumor type	Killing <i>in vitro</i>	Killing <i>in vivo</i>
SCCHN		
NSCLC		
Breast		
Prostate		
Colorectal		
Ovarian		
HCC		
Glioma		
Pancreatic		
Melanoma		n.d.
Cervical		
Bladder		
Sarcoma		
Myeloma		n.d.
Normal cells	X	Х

ADVEXIN[®] Inhibits Tumor Growth in Combination with Other Cancer Therapies

Additive or synergistic effects

Tumor types

- SCCHN
- NSCLC
- Breast
- Prostate
- Colorectal
- -HCC
- Glioma

<u>Therapies</u>

- -XRT
- CDDP
- 5FU
- Taxanes
- CPT-11
- Doxorubicin
- etc

Additional preclinical studies

- 8 GLP toxicology studies: mice, rats, cotton rats
 - Advexin well tolerated: sq; oral; iv; ip; ia
 - The liver is affected at very high doses with iv route, but see no liver effects in the clinic
- Biodistribution (PK) studies
 - $-t_{\frac{1}{2}} = 10$ minutes; no gonadal persistence
- Other safety studies
 - Little/ no effect on normal cells; lack of replication or integration

Therapeutic index > 3 logs

Clinical Studies

Advexin® Clinical Program

- > 600 patients treated with > 3,000 doses
- First trial conducted in 1995; published results in 1996
- > 30 active or completed trials
- Most patients treated with intratumoral injection
- Four additional routes of administration: IV, IP, BAL, intravesicle
- Randomized controlled Phase III multinational studies ongoing

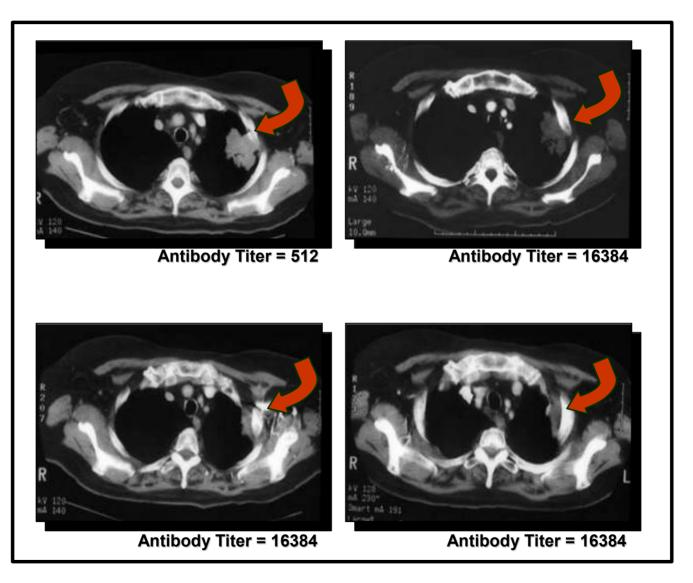
Advexin® Clinical Program

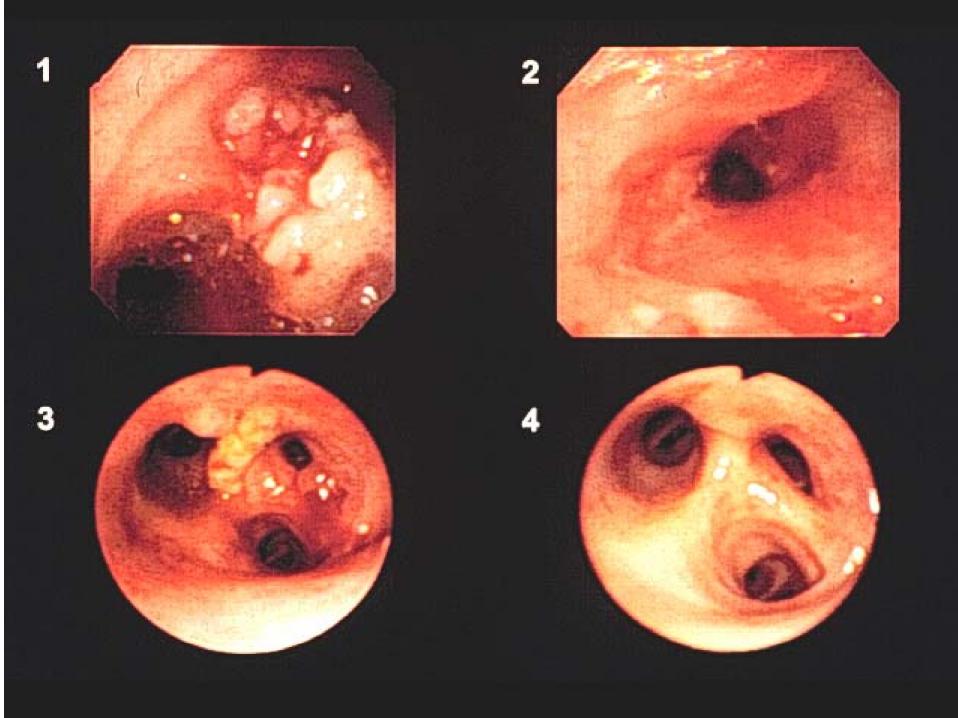
- <u>Phase I Trials</u> **US**; EU; Japan
 - Head & Neck, Lung, Breast, Prostate, Colorectal, Bladder, Ovarian, Brain, Lung + Chemotherapy, Solid Tumors (IV), Oral Premalignancy
- Phase II Trials
 - Head & Neck, Lung + Radiation, Breast + Chemotherapy, Esophageal
- Phase III Trials
 - Head & Neck ± Chemotherapy

ADVEXIN[®] Well Tolerated Safety Data in >600 Treated Patients

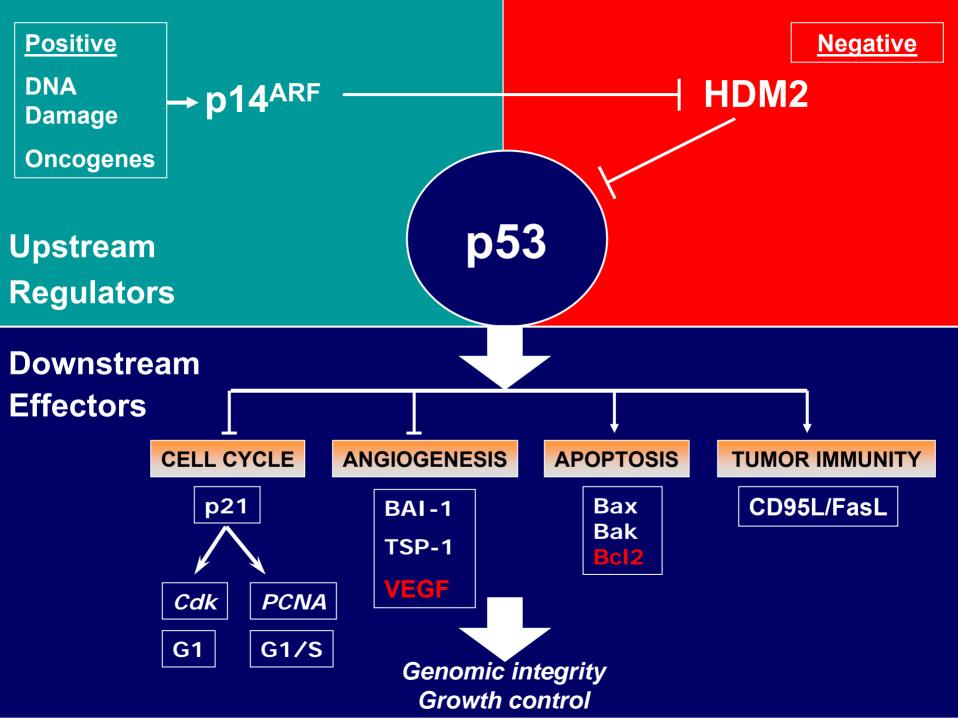
Body System	EVENT	All Serious Adverse Events Occurring in > 1% of Patients		SAE - Investigator Related	
		n	%	n	%
Body as a Whole	Fever	13	2.0	8	1.3
	Pain	10	1.6	1	0.2
	Asthenia	7	1.1	0	0
	Infection local	16	2.6	3	0.5
	Tumor hemorrhage	28	4.5	4	0.6
	Procedure (Inpatient scheduled)	8	1.3	0	0
Digestive	Vomit	11	1.8	1	0.2
	Dysphagia	8	1.3	1	0.2
Respiratory System					
	Pneumonia	38	6.1	5	0.8
	Dyspnea	24	3.9	4	0.6
	Apnea	11	1.8	0	0
Cardiovascular System	Hypotension	11	1.8	1	0.2
	Heart arrest	9	1.5	0	0
Metabolic and Nutritional Systems	Dehydration	26	4.2	4	0.6
	Kidney Failure	7	1.1	2	0.3

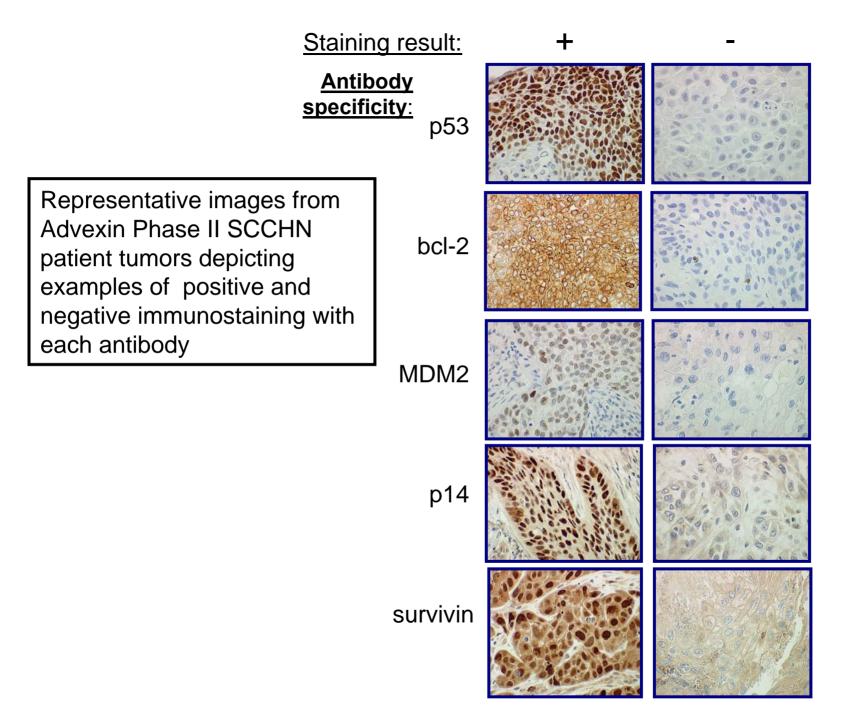
ADVEXIN[®] Monotherapy Results in Long Term Survival (> 8 years) in SCCHN


Cycle 13: 21 June 1999 39 injections ≈ 6X10¹³ vp


8 June 2006 276 injections ≈ 4X10¹⁴ vp

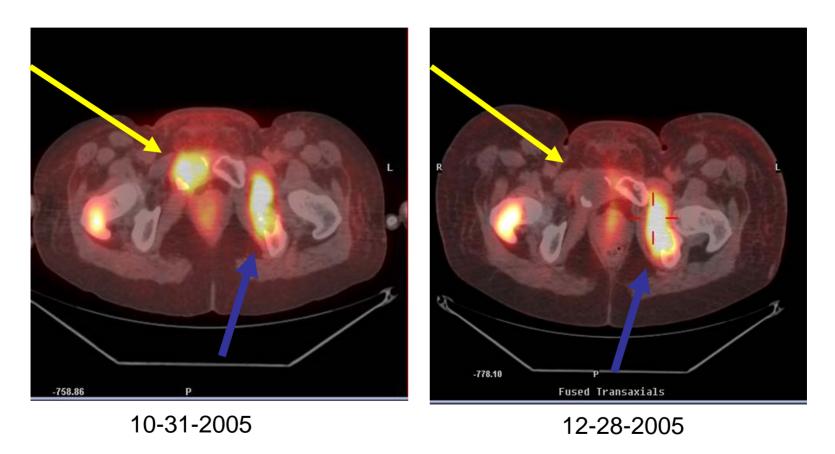
Baseline: 27 May 1998


Objective response after Advexin injection in NSCLC



Swisher *et al.*, J Natl Cancer Inst **91**:763-771, 1999. Failed RT and Chemo. Six months of Ad-p53 treatment. Tumor free biopsies after 2 months. Stable off therapy for >6 years

Molecular pharmacology and biomarker development


Interrogation of p53 pathway markers for tumor response and survival

Tumo	r Respo	nse	Overall Survival (Months) Log-Rank Test				
Univariate Lo	ogistic R	Regression					
Tumor Marker*	N	P-value	Tumor Marker*	Ν	Median	95% CI	P-value
p53	18	0.03	positive	11	11	(6.5, 16.0)	< 0.01
			negative	7	3	(1.5, 3.5)	
p53-Ser15	18	0.07	positive	8	12.2	(6.5, 16.0)	0.07
			negative	9	3	(2.0, 5.5)	
p14 ^{ARF}	18	0.28	positive	4	7.8	(1.0, 15.0)	0.65
			negative	14	6	(3.5, 11.0)	
HDM2	17	0.10	positive	8	10.8	(5.5, 16.0)	0.17
			negative	9	3.5	(2.0, 7.0)	
Bcl-2	17	0.17	positive	5	7	(3.5,)	0.32
			negative	12	4.8	(3.0, 11.0)	
survivin	13	0.62	positive	10	7.5	(3.5, 15.0)	0.88
			negative	3	3	(1.5,)	
* ≥20% is pos	itive for	p53, p14 ^{ARF} ,	-	3 d survivir	3	(1.5,)	

Imaging technology: PET-CT response in LFS patient

Pre-Treatment

Post-Treatment

SUV: 80% decrease in injected lesion. Non-injected lesion; 130% increase

Case Studies: Lessons and Issues

Key Strategic Decisions

Early decision on r & Development company
Rely upon academic collaborations for "r", animal data, etc.
Focus resources on generation of clinical data
Important to control supply of clinical-grade materials
Decision made early to create manufacturing infrastructure
Develop parallel regulatory development paths with FDA and EMEA
Take industrialized approach to clinical design and biostatistics – avoid repeating studies

Impact of Regulatory Interactions

Provided valuable guidance Early interactions important to avoid surprises Regulators don't have all the answers Be collaborative, not combative

Case Studies: Lessons and Issues

• Financial Considerations: Projected Costs vs. Reality

Everything is more expensive and takes longer.....

Heavy price for first-in-class development

No regulatory precedents

Investor reluctance (no comparables)

Pharma partner caution

Avoid temptation to cut corners on required GLP studies (more expensive to do it twice!!)

Outsourcing/ consultants

need careful oversight

do not assume they are "experts" in your area

monitor timelines

• People matter

- Flexible , non-silo people key in the early days
- Research mindset needs to evolve to industrial/ business approach

Case Studies: Lessons and Issues

- Impact of long development timelines
 - Early studies may not meet current standards (e.g., PCR sensitivity; RCA levels)
 - Evolution of clinical standard of care
 - New drug approvals

Lessons learned

- 1. Early deployment of Clinical Development Plan
 - Synchronize research and clinical studies
 - Enhances iterative translation-based development program
 - Challenges of using CROs:
 - Databases
 - Monitoring
 - Need oversight
 - Tough to modify protocols/ CRFs during study
 - Stick to the plan!! Avoid tempting, incremental research

Lessons learned

- 2. Biomarker development
 - Goal is to identify responding and nonresponding patient populations
 - Limited by patient #/ samples/ informed consent/ etc
 - Preparation is critical work closely with PI's on informed consent, CRF's, sample logistics

Words to the Wise

- Have the courage to kill a project
- Impact of having pharma partner early
 - Differences in cultures and risk assessment
 - Keep your eye on the clinical development plan
 - Control your company's/project's destiny
- What is your backup plan ???
 - Financially
 - Balance need for product pipeline with "all eyes on the prize"

Questions?