The Challenge of Bringing Forward New Agents for Systemic Therapy of Melanoma

John M. Kirkwood, MD

Director, Melanoma and Skin Cancer Program University of Pittsburgh Cancer Institute Professor & Vice Chairman Department of Medicine University of Pittsburgh School of Medicine

Melanoma in 2008

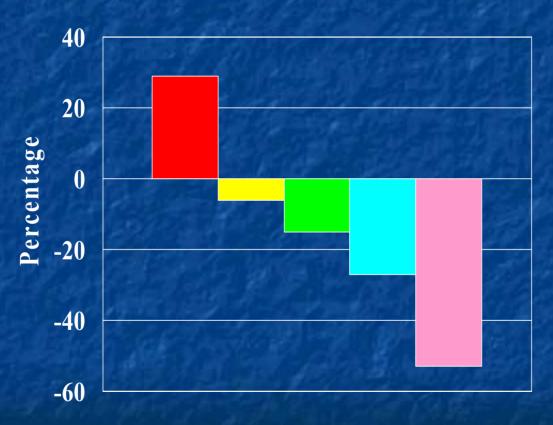
- Epidemic Proportions of Disease
- Primary/Regional Prognostic Assessment
- Advanced/Distant Metastatic Disease
 - New Chemotherapy, Cytokine, Antibody & Vaccine Options
 - Relevance of Immunobiology to Disease/Response:
 - Cytokines and Immunoregulation
 - Tumor Antigens & Vaccines
 - Dendritic Cells, T cells,

Immunostimulatory and Disinhibitory Antibodies

Incidence and Prognosis

 59,940 New cases of melanoma of the skin in 2007

- ~8110 Deaths
- 4% of new skin cancers
- Majority of skin cancer deaths


Disease Stage	5-Yr Survival
Localized	95%
Regional	65%
Distant	15%

A LONG

Jemal. CA Cancer J Clin. 2007;57:43.

Changes in Overall Cancer Mortality (1975-2003), United States

Melanoma
Prostate Cancer
Breast Cancer
Colorectal Cancer
Cervical Cancer

Which primary melanomas will be lethal?

The Initial Forum: Stage IV Melanoma

• M1a

Defined by site in skin/soft tissue/nodes without elevation of LDH

• M1b

 Defined by site in skin/ST/N and/or lung without elevation of LDH

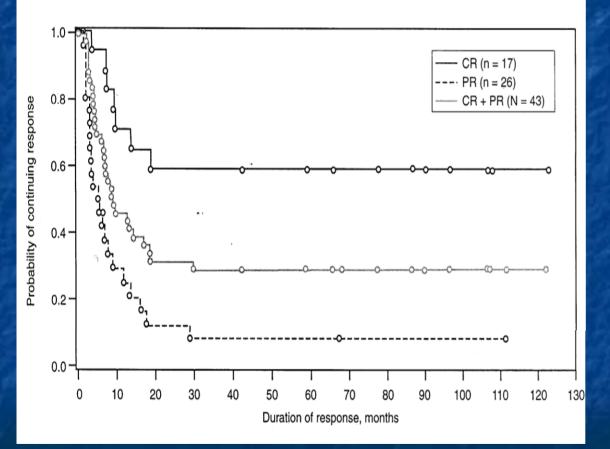
• M1c

 Defined by visceral site of involvement beyond lung or other distant site with elevation of LDH

(Usefully applied for multiple clinical trials)

Systemic Therapy of Advanced Melanoma

Stage IV (inoperable) survival <5% at 5+ years


Only one approved cytotoxic agent in use

- Dacarbazine (Temozolomide) with 6.8-12% response in modern trials, rarely durable
- Only one (biological) agent approved in modern times
 - High-dose IL-2, with 15% response and 5% durable responses

High Dose IL-2 Therapy Approved 1998

RR: 16%
 (43 / 270)

 Durable responses in 6%

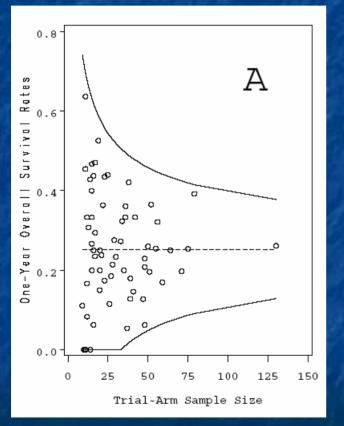
- Median Duration 8.9
 mos
- CR: not reached

(N=270, collected phase II studies)

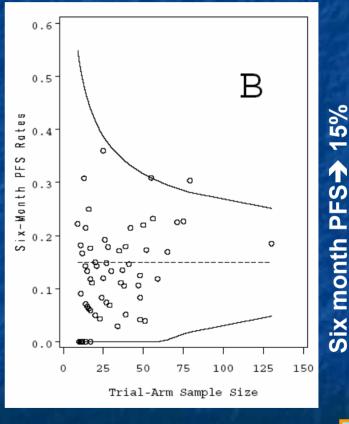
Atkins et al., JCO 1999

Interleukin-2 Summary

- High-dose bolus IL-2 approved by FDA in 1998
- Response rate ~16% of which 5-6% are durable remissions
- Toxicity and supportive care an issue
- Low dose IL-2 is not as effective
- Uncertain that any new agent with similar impact would receive approval

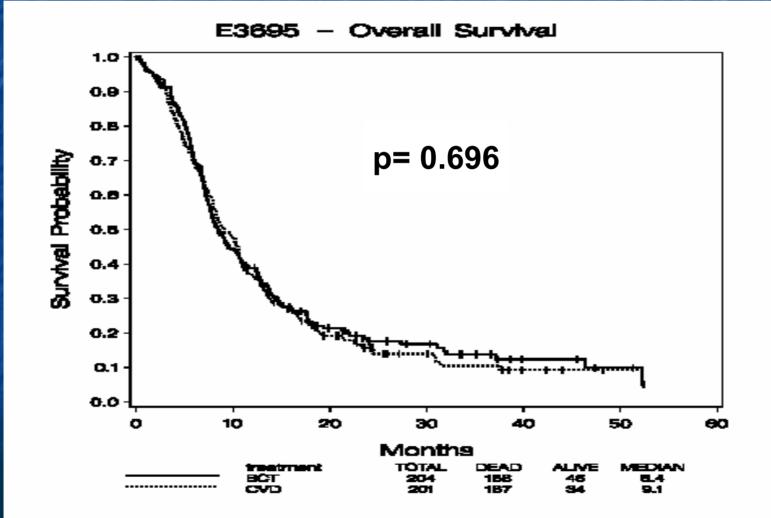


Cooperative Group Meta-analysis of 70 Phase II Trials, 2100 Patients, 35 Years Benchmarks for OS and PFS Endpoints


Survival at 1 year 30%

Progression Free Survival at 1 year 18%

Numbers of patients \rightarrow

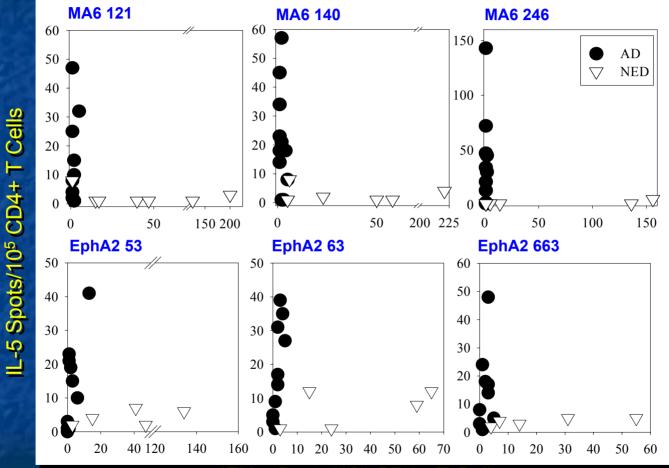


Numbers of patients→

E3695: Survival Data

Why so little impact of chemotherapy and combinations to date upon melanoma?

- Tumor cell drug resistance:
 - Mismatch Repair
 - Alkl guanine alkyl transferase (AGAT)
 - Base Excision Repair
- Specific molecular mechanisms of progression
 - BRAF mutated in 70% of melanoma
 - STAT3 constitutively activated in melanoma
- Tumor cell resistance to apoptosis
 - BCL2
 - Survivin


Summary

- No combination of agents is yet better than the single agent dacarbazine
- HD IL-2 produces long-term remissions in 5-10% of patients (very selected)
- Randomized multi-center phase III trials to date have all failed to reach primary endpoints with significant differences

Active stage IV melanoma is associated with immunological tolerance and Th2-type rather than effective Th1-type immune responses to MAGE-A6 & EphA2

IFN-γ Spots/10⁵ CD4+ T Cells

*AD = Active Disease; NED = No evidence of Disease. Patients exhibited Th1-type immunity to Flu/EBV Th Epitopes Tatsumi et al., J. Exp. Med. 196:619 (2002); Tatsumi et al., Cancer Res. 2003

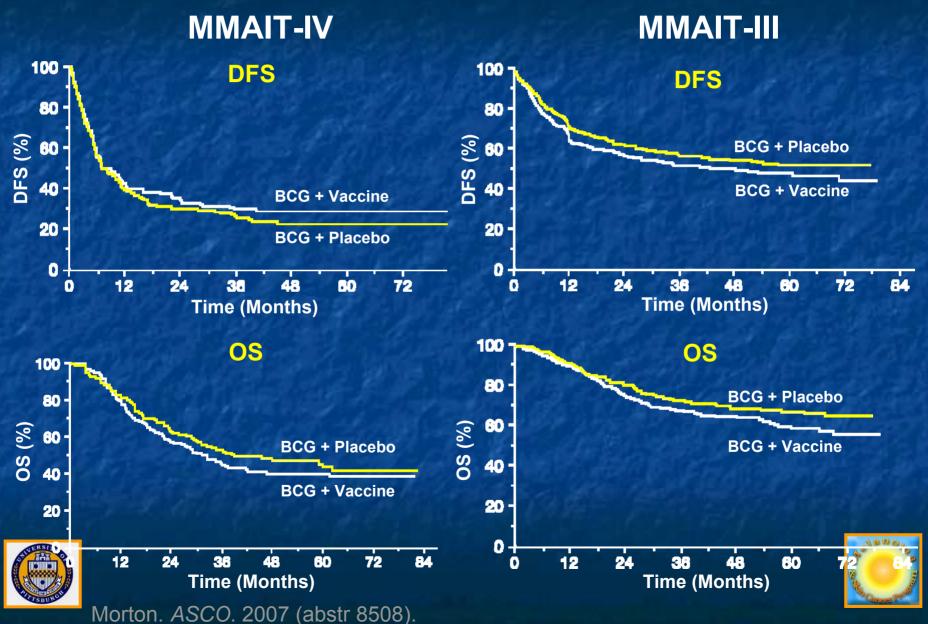
Adjuvant Trials have given more unequivocal results


- Vaccines, Adoptive Cellular/Passive Ab Transfer
 - Crude whole cell vaccines (Canvaxin)
 - Antibody (B cell)-inducing Gangliosides (GMK)
 - Effector T cell-inducing peptides (E1696; E4697; E1602); proteins, DNA
- Interferons & Cytokines
 - IFNγ (E4687, S8710)
 - IL-2 (S0008)
 - GM-CSF [peptide vaccines] (E4697)
 - IFNα2—the single agent established in current standard practice through mature phase III randomized controlled multicenter cooperative group investigations

Key: statistically significant negative impact in Phase III Trial; Trial results pending; ph II or III evidence of significant benefit

MMAIT: Phase III Trial of Allogeneic Melanoma Vaccine in Resected, Metastatic Melanoma

a Dian P	Stage III			Stage IV		
COLORY 1	Vaccine	Placebo	P	Vaccine	Placebo	P
DFS	43 mo	>60 mo	0.047	8.3 mo	7.2 mo	0.418
5-Yr DFS	47%	52%		27%	21%	
OS	>69 mo	>69 mo	0.04	32 mo	39 mo	NR
5-Yr OS	59%	68%		40%	45%	

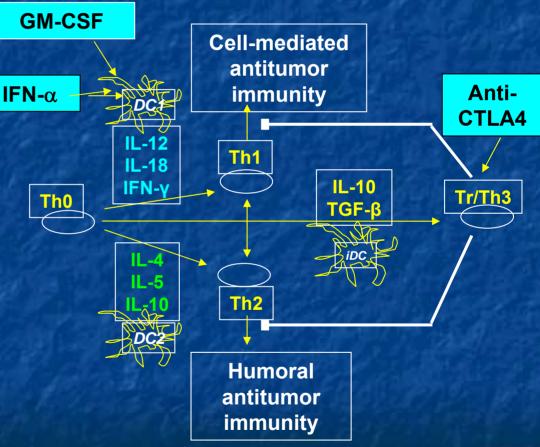


BCG=Bacille Calmette-Guérin; DFS=disease-free survival.

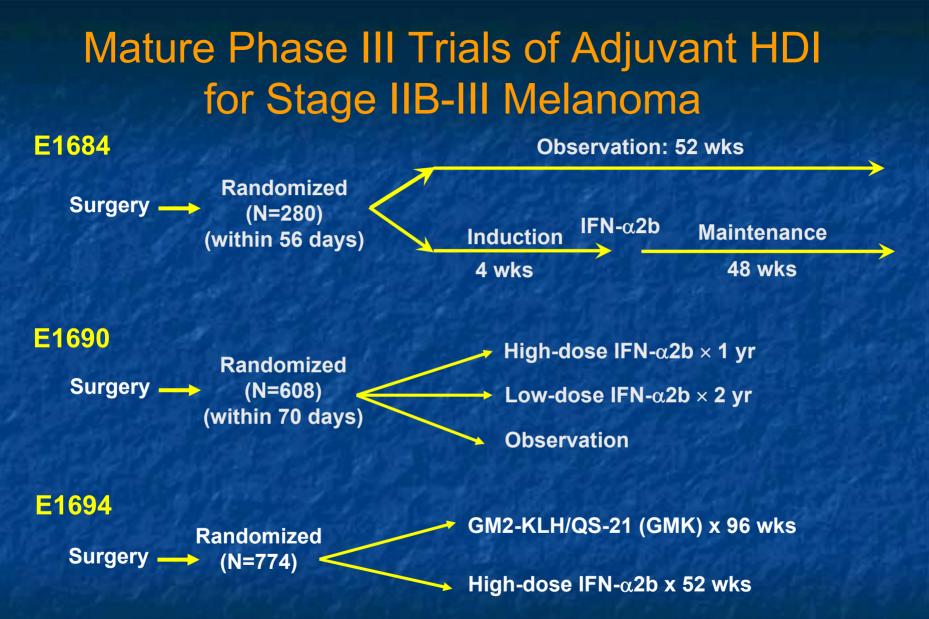
A DOMO

Morton. ASCO. 2007 (abstr 8508).

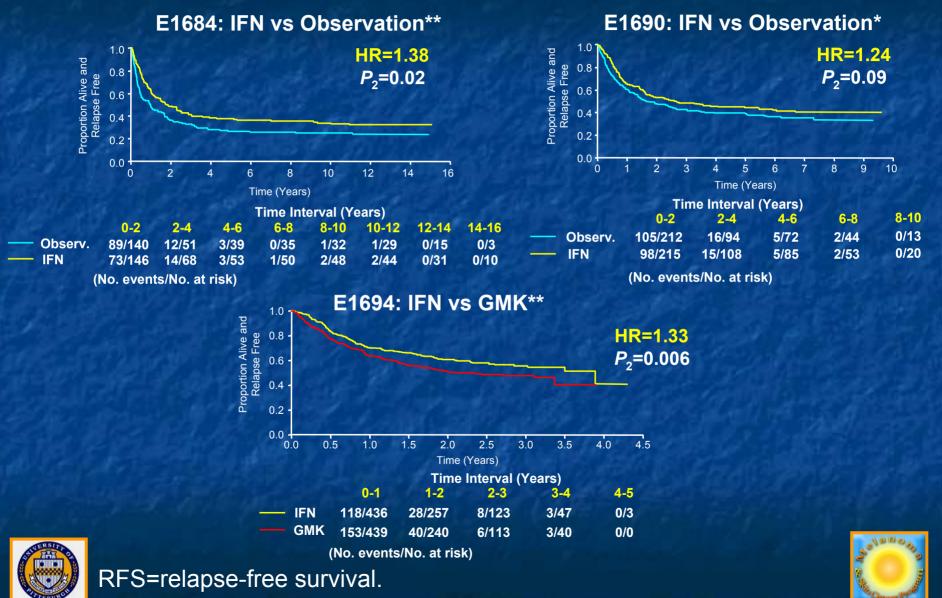

MMAIT: Results



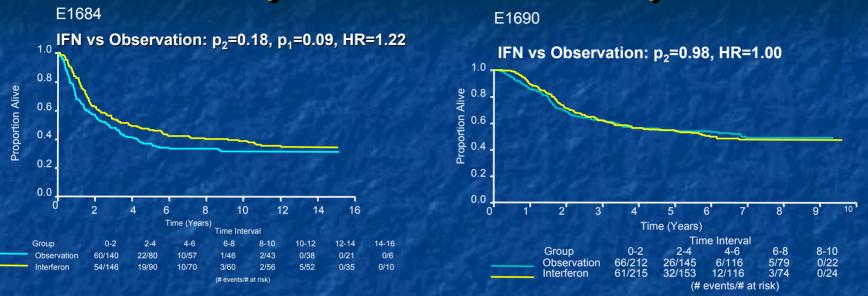
Established and New Potential Adjuvant Immunotherapy For Melanoma


IFNs augment • effector cell numbers and function, repolarizing the response to tumor cells

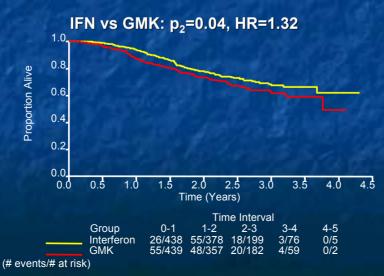
IFNs also inhibit proliferation and induce melanization in



HDI=high-dose interferon.


Kirkwood. J Clin Oncol. 1996;14:7; Kirkwood. J Clin Oncol. 2000;18:2444; Kirkwood. J Clin Oncol. 2001;19:2370.

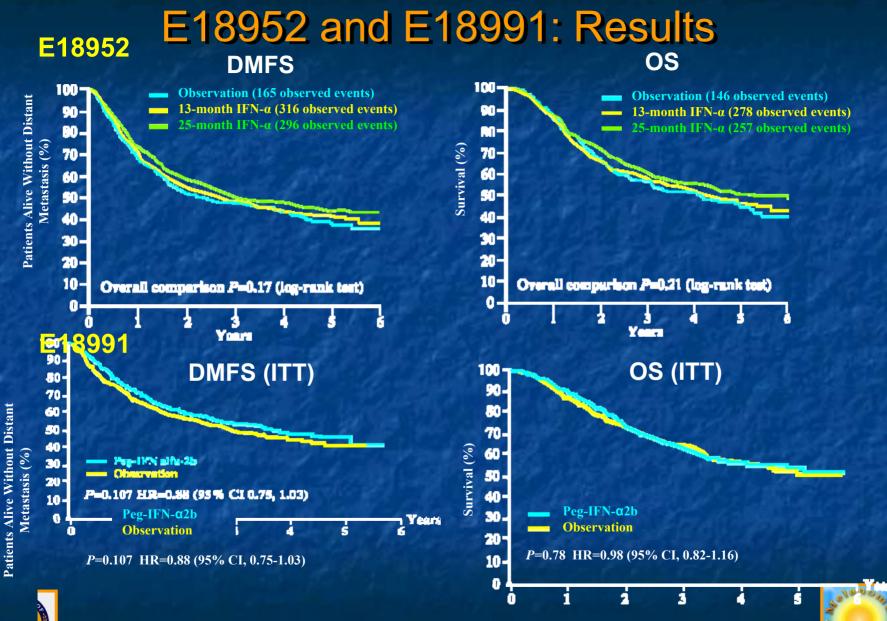
E1684, E1690, and E1694: Durable Impact upon RFS* and Significant Impact on OS**



Kirkwood. Clin Cancer Res. 2004;10:1670.

Overall survival benefit for pivotal E1684²¹ to >10 years is confirmed by E1694

E1694


Kirkwood JM, et al. Clin Cancer Res. 2004:10:1670

Issues with high-dose IFNα survival benefits

- Two independent trials demonstrate significant durable survival benefits of IFNα
 - But a third does not: change in entry requirement of lymphadenectomy and asymmetric crossover after FDA approval of HDI provides a plausible explanation
- Benefit upon overall survival and relapse-free survival are not parallel after 10 yrs
 - Non-melanoma causes of death at >10 yrs may erode survival differences (EORTC 18952 [^]cardiac deaths?
 - \rightarrow Need analysis of death causes, salvage patterns
- Cost/Toxicity
 - >90% of E1694 patients without relapse completed 1 year of therapy, and cost efficacy is ~ other accepted therapies

CI=confidence interval; DMFS=distant metastasis–free survival; ITT=intent to treat. Eggermont. *Lancet.* 2005;366:1189; Eggermont. *ASCO.* 2007 (abstr 8504).

Adjuvant IFN Therapy: Tolerability and Treatment Duration

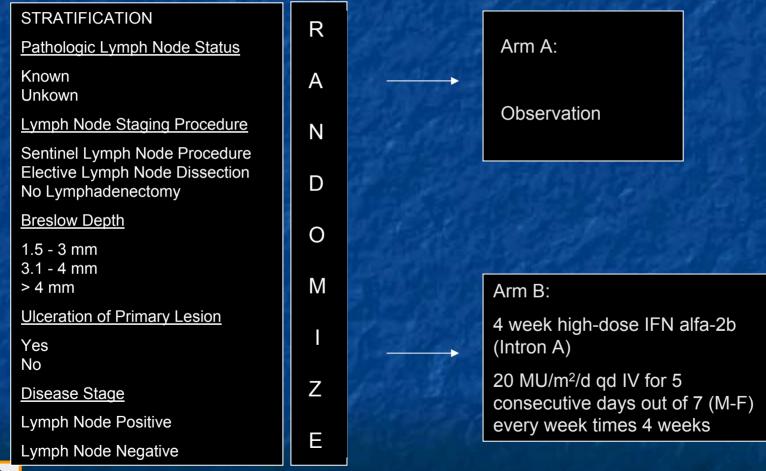
Trial	Regimen	Endpoint	Patients Remaining on IFN Therapy	
E1684	20 MU/m²/day 1 mo, then 10 MU/m² 3/wk 48 wks	6.9 yrs	~60% Received ≥80% of target dose	
E1690	20 MU/m²/day 5/wk 1 mo, then 10 MU/m² 3/wk 48 wks	4.3 yrs	59% Required dose delay or reduction	
E1694	20 MU/m²/day 5/wk 1 mo, then 10 MU/m² 3/wk 48 wks	16 mo	90%	
E18952	10 MU 5/wk 4 wks, then 10 MU 3/wk	13 mo	84%	
	10 MU 5/wk 4 wks, then 5 MU 3/wk	25 mo	80%	
E18991	6 μg/kg/wk 8 wks, then 3 μg/kg/wk	5 yrs	30%	
WHO 16	3 MU 3/wk	3 yrs	100%	
French Group	3 MU 3/wk	18 mo	65%	

Kirkwood. *J Clin Oncol.* 1996;14:7; Kirkwood. *J Clin Oncol.* 2000;18:2444; Kirkwood. *J Clin Oncol.* 2001;19:2370; Eggermont. *Lancet.* 2005;366:1189; Eggermont. *ASCO.* 2007 (abstr 8504); Cascinelli. *Lancet.* 2001;358:866; Grob. *Lancet.* 1998;351:1905.

How to improve the therapeutic index?

Dissect the roles of induction vs. maintenance

All positive trials of IFNα utilized IV induction at 20MU/m² (C_{max} >10,000u/mI)
Is one month of IV IFNα2b both necessary and sufficient?


– Intergroup E1697

E1697 - A randomized study of four weeks of high-dose interferon alpha-2b in stage T3-T4 or N1 (microscopic) melanoma

Hypothesis: Induction IV IFN is necessary and sufficient to achieve durable adjuvant benefit in intermediate-risk melanoma patients

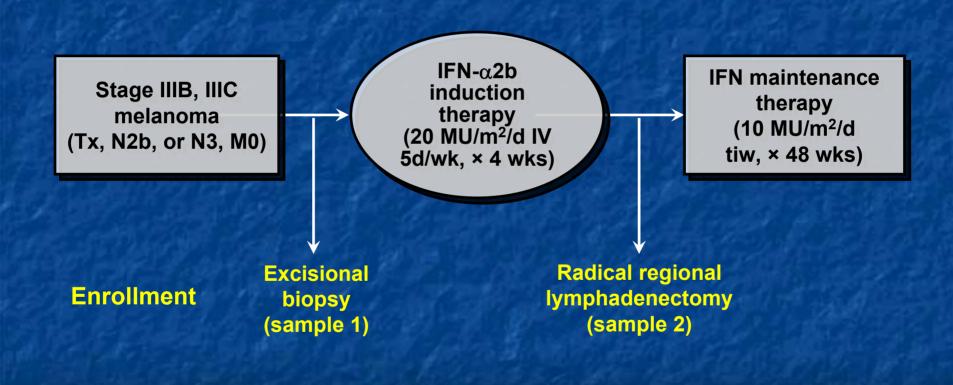
Gaps in Therapy of Melanoma

More precise markers of prognosis
 Treat only those at risk of relapse

Markers to predict treatment benefit

 Treat only those capable of response
 Apti-tumor immunity

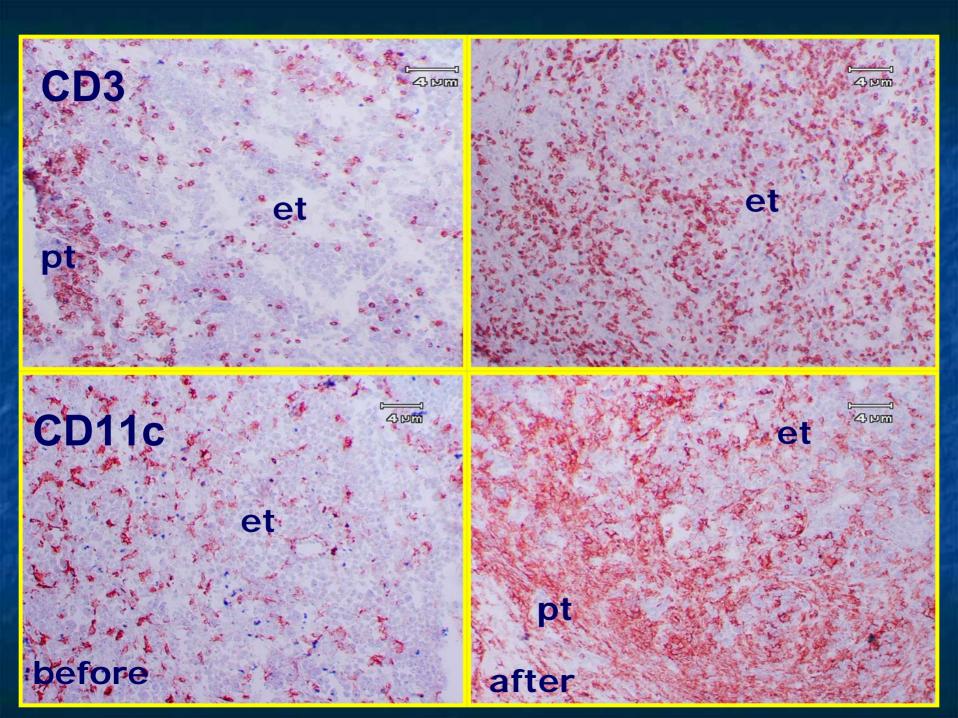
- Anti-tumor immunity
- Autoimmunity to pigment cell markers, other tissue antigens


Neoadjuvant Therapy in Patients with Stage III Melanoma UPCI 00-008

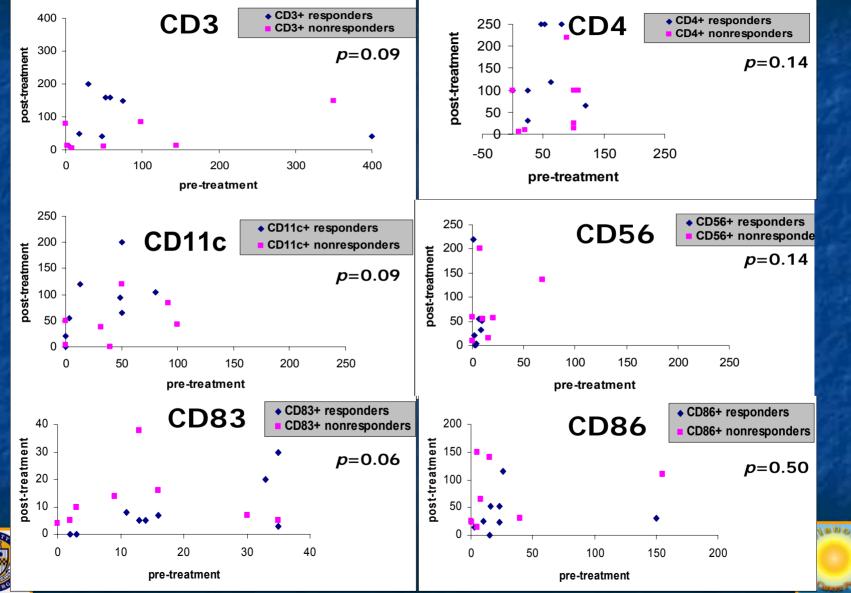
- Biomarker discovery to better predict treatment efficacy
- Define molecular mechanisms of treatment
 - Which of the multiple known actions are critical?
 - Direct pro-apoptotic, anti-angiogenic, or indirect immunomodulatory effects?
- Clinical response assessment at 4 weeks for correlation with RFS and OS

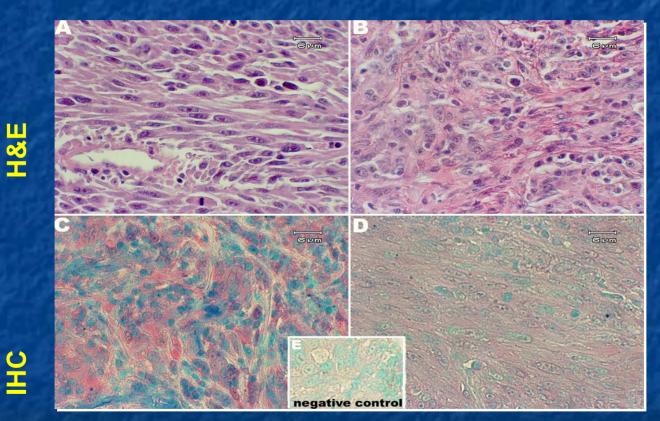
UPCI 00-008 Schema

A Canon


Moschos et al., 2006

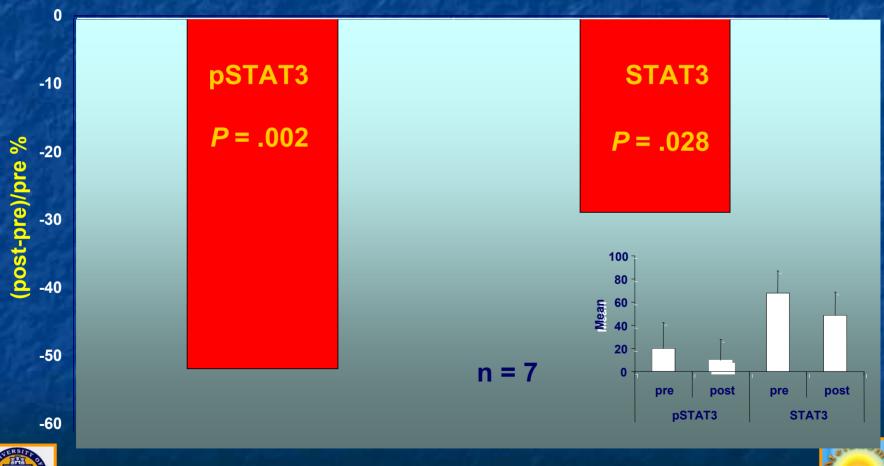
Results


20 patients enrolled - (age median 59, range 40-78; 13 males) 11 with recurrent disease – 15 completed 4 weeks of HDI Objective Response at 4 weeks of treatment: • Clinical 1 complete, 10 partial Pathologic 3 complete, 2 microscopic residual disease



HDI increases the number of immunologically relevant cells infiltrating regional lymph node metastatic tumor

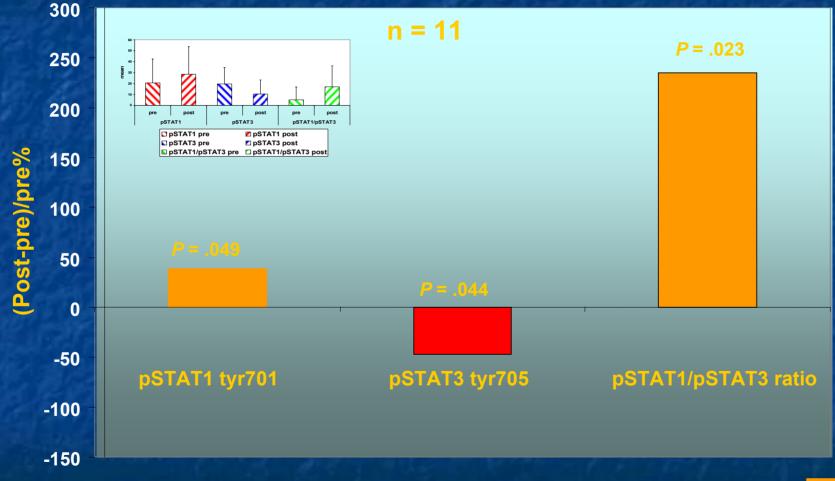
HDI Down-Regulates pSTAT3 Tyr705 And STAT3 Expression in Tumor Cells Pretreatment Post treatment


Blue = pSTAT3tyr705

Red = STAT3

Wang et al., Clin Cancer Res 2007

HDI Down-Regulates pSTAT3 Tyr705 and STAT3 in Regional Lymph Node Metastases of Melanoma



Wang et al., Clin Cancer Res 2007

HDI Up-regulates pSTAT1 Tyr701 and Downregulates pSTAT3 Tyr705 in Melanoma

Wang et al., Clin Cancer Res 2007

Conclusions from Neoadjuvant High-Dose IFN-α2b Trial 00-008

- Clinical response at day 29 is improved
 - 55% of patients with objective response
 - Radiographic and pathologic criteria
 - Relapse-free and overall survival data too early for final assessment
- Molecular and immunologic effects:
 - $-\downarrow$ pSTAT3/STAT3, IFNAR2
 - $-\uparrow$ pSTAT1, pSTAT1/3 ratio, and TAP2

Autoimmunity as a Key to Therapeutic Role of IL-2, IFN-α, and Anti-CTLA4 Antibodies

Prognostic Significance of Autoimmunity

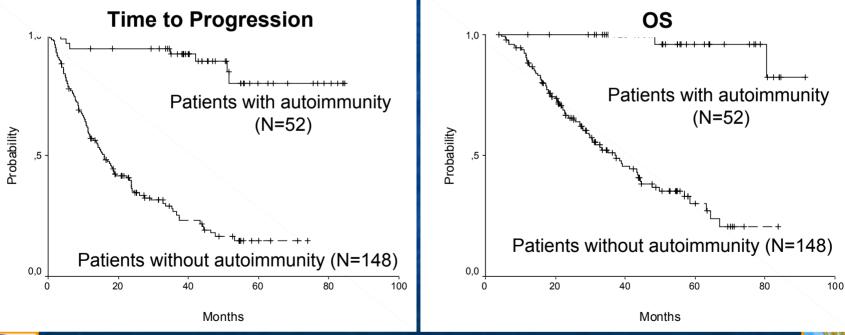
- Subset analysis of phase III trial
- 200 Patients with stage IIB/IIIC melanoma

Stage IIB/IIIC melanoma

Arm 1: IFN- α 2b 15 MU/m² 5 x weekly for 4 wks, then observation (N=96)

Arm 2: Same as Arm 1 + IFN-2b 10 MU 3 x weekly for 48 wks (N=104)

Manifestation of Autoimmunity	N	%
Antinuclear Antibodies	12	6
Anticardiolipin Antibodies	10	5
Vitiligo	11	6
Clinical Manifestations	19	10
Multiple Manifestations	16	8



Gogas et al., *N Engl J Med*. 2006;354:709.

Multivariate Analysis for OS in High-Risk Melanoma Patients Receiving HDI

Positive	RFS		OS		
Autoimmunity Status	HR (95% CI)	Р	HR (95% CI)	Р	
At 3 mo	0.15 (0.06-0.37)	<0.001	0.07 (0.02-0.28)	<0.001	
At 12 mo	0.08 (0.03-0.22)	<0.001	0.02 (<0.01-0.15)	<0.001	

HDI=high-dose IFN-α2b.

Gogas. N Engl J Med. 2006;354:709.

Autoimmunity Is Correlated With Improved Outcomes in Melanoma

- Development of vitiligo, thyroiditis, and autoantibodies to other endocrine targets predicts reduced relapse risk and improved DFS and OS
 - Results confirmed in subset analyses of 13A/98 (phase III), E1694 (phase II), and E2696 (phase II)
- Induction of autoimmunity is a common thread for active immunomodulatory therapies of this disease
 - Spontaneous vitiligo is a favorable attribute
 - For disease outcome
 - For response to therapy: IL-2; anti–CTLA-4; IFN

Autoimmunity to endocrine and pigment cell targets is a surrogate for immunity to tumor antigens yet to be defined

Gogas. *N Engl J Med.* 2006;354:709; Stuckert. *ASCO.* 2007 (abstr 8506); Stuckert. *AACR.* 2007 (abstr 166); Nordlund. *J Am Acad Derm.* 1983;9:689; Phan. *J Clin Oncol.* 2001;19:3477; Phan. *Proc Natl Acad Sci U S A.* 2003;100:8372.

Biomarkers of Disease Progression

Blood LDH: reanalysis of GM301 and E18951

- Trials had identical eligibility
- Higher LDH correlated with decreased OS in advanced melanoma
- Elevations predictive of nonresponse to oblimersen treatment
 - Patients with nonelevated baseline LDH had higher OS (12.3 mo vs 9.9 mo; P=0.0009) and ORR (20.8% vs 7.2%; P=0.002) in oblimersen + DTIC arm vs DTIC arm
- S100
 - S100 \ge 0.08 μ g/L is an independent prognostic marker for RFS and OS)
 - S100B is a prognostic marker for DMFS in patients with stage III melanoma

Multiplexed Analysis of Serum Biomarkers

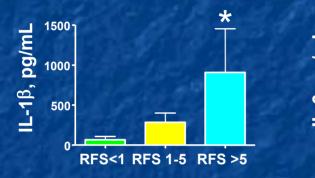
High-throughput xMAP multiplex immunobead assay

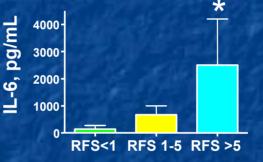
- Tested 29 analytes: cytokines, chemokines, angiogenic factors, growth factors, and soluble receptors
- Serum of 378 matched healthy subjects vs 179 patients with melanoma from ECOG E1694
 - Phase III trial of HDI vs ganglioside vaccine in resected, high-risk, cutaneous melanoma
- Serum concentrations of many markers were found to be higher in patients with resected, high-risk melanoma than in healthy individuals

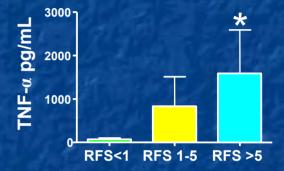
E1694

GMK x 96 wks

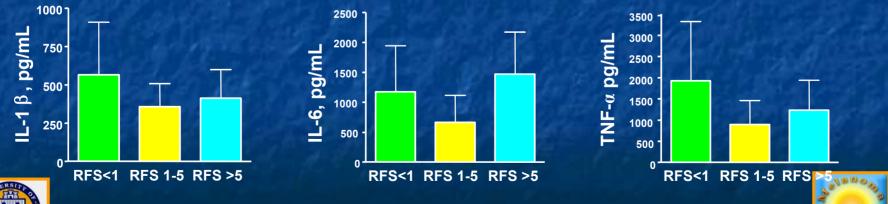
High-dose IFN- α 2b x 52 wks





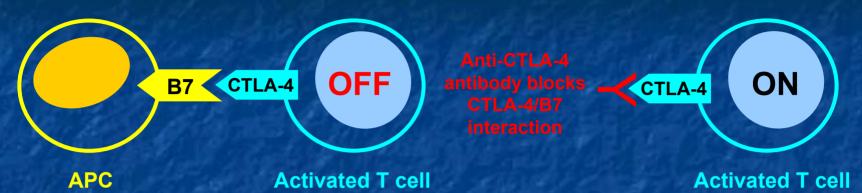

Yurkovetsky. Clin Cancer Res. 2007;13:2422; Kirkwood. J Clin Oncol. 2001;19:2370.

Predictive Role of Pretherapy Serum Cytokine Levels for IFN Adjuvant Therapy


Patients Receiving HDI

Patients Receiving GMK

Reproduced with permission from Yurkovetsky. Clin Cancer Res. 2007;13:2422.


Conclusions

- IL-2, IFNα, and anti CTLA4 blocking antibodies induce durable remission in metastatic disease through mechanisms that appear to be immunological, and variably associated with induction of autoimmunity to normal tissues
- Adjuvant arena may be the most informative for new biological agents

CTLA-4

- Glycoprotein expressed on the surface of activated T cells
- Downregulates T-cell response
 - Decrease in IL-2 production
 - Arrest of cell cycle progression
- Anti-CTLA-4 monoclonal antibody antitumor activity in murine models

Anti-CTLA4 Blocking Antibodies

 Potent new inducer of autoimmunity associated with durable antitumor effects in advanced melanoma

Potentially greater impact in adjuvant setting vs. microscopic disease?

CTLA-4 Antagonistic mAbs in Clinical Development

Antibody Name Former Names		Type of Antibody	lg Subtype	Plasma Half-life
lpilimumab	MDX010 BMS-734,016	Fully human	lgG1	12-14 days
Tremelimumab	CP-675,206 ticilimumab	Fully human	lgG2	22 days

	lgG1	lgG2	lgG3	lgG4
Antibody-dependent Cellular Cytotoxicity	+++	±	+++	+
Complement Fixation	++	+	+++	
Plasma Half-life	23 days	23 days	9 days	23 days

Ribas. *J Clin Oncol.* 2005; Benjamini. *Immunology: A Short Course*. 3rd ed. New York, NY: Wiley-Liss, Inc. 1996; Paul, ed. *Fundamental Immunology*. 3rd ed. New York, NY: Raven Press, Ltd. 1993; Korman. *Adv Immunol*. 2006;90:297.

Published Full Text Manuscripts of Antitumor Activity of Anti-CTLA-4 mAb in Melanoma

	Antibody	Combination	mAb Dose	Dose	Patients With Measurable Melanoma	ORR
Hodi, 2003	lpilimumab (MDX010)	No	3 mg/kg	Single	7	0%
Attia, 2005 Phan, 2003	lpilimumab (MDX010)	gp100 peptides	3 mg/kg	q3w	56	7%
Maker, 2005	lpilimumab (MDX010)	HD IL-2	0.1-3 mg/kg	q3w	36	8%
Maker, 2006	lpilimumab (MDX010)	No	3-9 mg/kg	q3w	46	5%
Ribas, 2005	Tremelimumab (CP-675,206)	No	0.01-15 mg/kg	Single	29	4%
Reuben, 2006	Tremelimumab (CP-675,206)	No	10-15 mg/kg	q1m or q3m	30	5%

Hodi. *Proc Natl Acad Sci U S A*. 2003;100:4712; Attia. *J Clin Oncol*. 2005;23:6043; Phan. *Proc Natl Acad Sci U S A*. 2003;100:8372; Maker. *Ann Surg Oncol*. 2005;12:1005; Maker. *J Immunol*. 2006;29:455; Ribas. *J Clin Oncol*. 2005;23:8968; Reuben. *Cancer*. 2006;106:2437.

Phase I/II Trial: Tremelimumab in Stage III/IV Melanoma

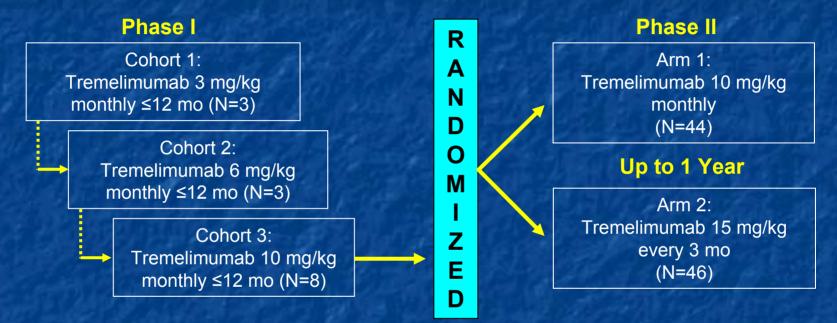
Arm 1: CP-675,206			
10 mg/kg monthly (N=20)	Response	IRAE+	IRAE-
	N	12	18
Arm 2: CP-675,206 15 mg/kg every 3 mo	ATR	4	1
(N=10)	5154537	K HE LO L	

Adverse Events

S. Blackhing	IRAE	Grade 1	Grade 2	Grade 3
10 mg/kg	Diarrhea	1466	4	5
(N=20)	Dermatitis	8	1	1
15 mg/kg	Diarrhea	1	2	0
<u>(N=10)</u>	Dermatitis	3	0	0

IRAE+/ATR+ correlation between CTLA-4 and • glucocorticoid-induced TRFR transcripts (P=0.015)

Arm 2 15 mg/


IRAE-/ATR- PD1 receptor (P=0.000) •

ATR=antitumor response; IRAE=immune-related adverse event. Reuben. Cancer. 2006;106:2437.

Phase I/II Trial: Tremelimumab in Stage III/IV Melanoma (Cont.)

		Phase I			Pha	ase II	
	Dose Level	3 mg/kg monthly	6 mg/kg monthly	10 mg/kg monthly	10 mg/kg monthly	15 mg/kg every 3 mo	
ITT OF	OS	8 mo	6 mo	22.7 mo	10.2 mo	11.5 mo 📘	s/snot
	1-Yr OS		58%		32%	46% 🐧	Canot Pro

Gomez-Navarro ASCO 2007 (abstr 8524)

Phase II Trial: Tremelimumab in Advanced Melanoma

If 3 objective

responses, proceed to

stage II

Stage I Randomized

Arm 1: Tremelimumab

10 mg/kg monthly

(N=18)

Arm 2: Tremelimumab

15 mg/kg every 3 mo

(N=18)

Stage II Nonrandomized

Arm 1: Tremelimumab 10 mg/kg monthly (N=26)

> Arm 2: Tremelimumab 15 mg/kg every 3 mo (N=28)

Stage III/IV unresectable melanoma

Tevielilee*	Ar	m 1	Arm 2		
Toxicities*	Grade 3	Grade 4	Grade 3	Grade 4	
Diarrhea/Colitis	25%	2.5%	13%	0%	
Nausea/Vomiting	5%	0%	0%	0%	
Pancreatitis/Lipase	2.5%	0%	2.5%	2.5%	
Arthritis	2.5%	0%	0%	0%	
skin Rash	2.5%	0%	2.5%	0%	

Ribas. ASCO. 2007 (abstr 3000).*Toxicity increases with continued dosing.

Phase I/II Trial: Ipilimumab in Patients With Unresectable Stage III/IV Melanoma

Unresectable metastatic melanoma A: Ipilimumab 2.8, 3, or 5 mg/kg Days 1, 57, and 85 (N=34)

B: Ipilimumab 7.5, 10, 15, or 20 mg/kg Single doses (N=30)

C: Ipilimumab 10 mg/kg every 3 wks Days 1, 22, 43, and 64 (N=24)

Phase I/II Trial: Ipilimumab in Patients With Unresectable Stage III/IV Melanoma

Cohort	Response		Duration	Disease Control Rate
A	ORR	1 PR	246 days	
A (N=34)	SD	4	29, 61, 168, 172 days	15%
В	ORR	1 CR	211 days	13%
(N=30)	SD	3	37, 109, 395 days	1370
С	ORR	1 CR, 1 PR	263, 275 days	39%
(N=23)	SD	7	99, 190, 194, 194, 246, 351, 379 days	39%

Weber. J Clin Oncol. 2007;25:477S (abstr 8523).

Phase I/II Trial: Ipilimumab in Patients With Unresectable Stage III/IV Melanoma: Results

- IRAE
 - Overall incidence: 72%
 - All patients with ORR and 13/14 SD had IRAE
 - Most events grade 1/2 and reversible
- 25 Patients had SAEs
- 9 Patients across all doses had ipilimumabrelated SAEs
 - 1 Patient perforated bowel @ 2 doses of ipilimumab 10 mg/kg
- Ipilimumab-related SAEs
 - Diarrhea, colitis, nausea, cerebral edema,

gastrointestinal perforation, and abdominal pain

Proposed US Intergroup E1607 Phase III trial: Anti-CTLA4 Antibody CP-675,206 vs. Placebo

Anti-CTLA4 Antibody CP-675,206

S U R G E R Y Patients with T (any) N2 post IFN -orany resectable M1a or M1b

Placebo

Primary endpoints: Survival, progression-free interval Secondary Analyses: Autoimmune, antitumor responses

Building the Next Generation Adjuvant Therapy

- Anti-CTLA4 for IFN failures in stage IIIB
 - Intergroup ECOG-SWOG study E1607(Tremelimumab 15mg/kg q3mos) is in planning;
 - EORTC study of MDX-010 10 mg/kg q 3 wks is in planning
- Combinations of IFN α and other agents
 - Vaccines→Recall and polarize response w/IFN (04-125)
 - Cytotoxic Antibodies → Improve ADCC with IFN (07-023)
 - Anti-CTLA4: Tremelimumab combined w/IFN (05-125)
- Neoadjuvant studies may afford a rapid avenue to evaluate therapeutic efficacy and mechanism of candidate agents & combinations

Opportunities

 Evaluate more specific anti-tumor immune responses induced by established and investigational agents

(IL-2, IFNα, anti-CTLA4 blocking antibodies)

- Identify genetic determinants of capacity to induce effective antitumor immunity
- Define specific prognostic and predictive markers of immunity in conjunction with ongoing/new trials of immunomodulators

